

2023年电化学储能青年论坛



# 锂离子电池微米硅负极的 结构和界面稳定策略

#### 赵子云,吴士超\*,杨全红\*

天津大学 化工学院 Nanoyang Group 化学工程国家重点实验室 TJU-NUS福州联合学院

<u>qhyangcn@tju.edu.cn</u>, <u>http://nanoyang.tju.edu.cn</u>



#### 口 研究背景

### 口 研究内容

# 口 总结与展望

口 致谢

#### 发展高能量密度锂离子电池

#### 碳中和成为全球共识





#### 2019诺贝尔化学奖锂离子电池技术

"能源和交通是碳排放的大户,因此,实现能源的 清洁化和交通的电动化,是实现碳中和的重要保障。 锂离子电池的发明和应用,让人类实现无化石能源 的社会成为可能。"

国务院办公厅关于印发新能源汽车产业 发展规划(2021—2035年)的通知 国办发〔2020〕39号

专栏1 新能源汽车核心技术攻关工程

#### 实施电池技术突破行动。开展正负极材料、电解液、隔膜、膜电极等关键核心技术研究,加强

高强度、轻量化、高安全、低成本、长寿命的动力电池和燃料电池系统短板技术攻关,加快固态动

#### 政策导向+材料革新

硅负极是下一代电池负极技术突破的关键点



 $372 \text{ mAh g}^{-1}$  ~500 mAh cm  $^{-3}$ 

诺贝尔奖颁奖词

#### 硅负极的发展潜力



- ◆ Low cost (26.3% of the Earth's elemental content)
- ♦ High C<sub>q</sub> (3579 mAh g<sup>-1</sup> ~ 4200 mAh g<sup>-1</sup>, 10X)
- ♦ High C<sub>v</sub> (>2000 mAh cm<sup>-3</sup>, 4X)
- Proper voltage plateau (0.2–0.4 V vs Li/Li<sup>+</sup>)

### 硅负极的发展潜力



崔屹, Amprius 450 Wh/kg, 1150 Wh/L <mark>Si纳米线</mark> (2022.8)



马斯克, Tesla 4680圆柱电池, <mark>原始冶金硅</mark> 成本1.2美元/千瓦时 较石墨降低88%



2025 年硅负极混品需求 超50万吨

目前, 硅碳负极掺硅量占10% (400-650 mAh g<sup>-1</sup>)

未来提升空间巨大

### 硅负极的发展挑战

硅基材料在充放电过程中存在严重的体积变化,容易引致硅颗粒破裂、材料粉化、极片脱落等问题,导致循环性能及库伦效率较差,大规模商业化仍存掣肘



#### 关键科学问题: 由硅晶格失稳 (机械电化学) 导致的电学问题

#### 问题根源——晶体硅负极锂化特性



Nat. Rev. Mater. 2022, 7, 736 Adv. Mater. 2021, 33, 2004577 Adv. Mater. 2013, 25, 4966 ACS NANO 2012, 6, 1522

#### 微米硅 or 纳米硅——硅负极发展路线



Z. Zhao, Q.-H. Yang\*, et al, Adv. Energy Mater., 10.1002/aenm.202300367



#### Mass loading & Volumetric capaicty, Coulombic efficiency & electrolyte decomposition, should be comprehensively assessed.

#### Mass loading & Volumetric energy density (体积容量=质量容量\*电极密度)



材料:尺寸和密度呈负相关性。增加活性材料尺寸 (石墨负极: 1.3-1.6g cm<sup>-3</sup>, 纳米硅 0.1-0.2g cm<sup>-3</sup>, 0.8-1g cm<sup>-3</sup>)

电极:不损失活性材料活性的同时尽量降低非活性材料含量

(粘结剂<3 wt.%,实现~1500 mAh g<sup>-1</sup>、~1250 mAh cm<sup>-3</sup>)

#### **Coulombic efficiency & Electrolyte decomposition**

#### 通常情况下, 80%的容量 保持率是电动汽车行业电 池寿命的标准。

 Table 1 Influence of Coulombic efficiency (CE) on capacity

 retention in a theoretical full cell

| CE cycle | <b>99</b> %                 | <b>99.8</b> % | <b>99.9</b> % | <b>99.96</b> % | <b>99.98</b> % |
|----------|-----------------------------|---------------|---------------|----------------|----------------|
| 20       | 0.99 <sup>20</sup> = 81.79% | 96.08%        | 98.02%        | 99.20%         | 99.60%         |
| 100      | 36.60%                      | 81.86%        | 90.48%        | 96.08%         | 98.02%         |
| 200      | 13.40%                      | 67.01%        | 81.86%        | 92.31%         | 96.08%         |
| 500      | 0.66%                       | 36.75%        | 60.64%        | 81.87%         | 90.48%         |
| 1000     | 0.00%                       | 13.51%        | 36.77%        | 67.02%         | 81.87%         |



电池中有限的锂源、补锂技术限制了纳米材料的长循环寿命

Nat. Commun., 2018, 9, 5262 Nat. Commun., 2023, 14, 6048



#### 纳米硅材料制备、表面稳定性处理成本高

Nano Energy, 2020, 78, 105101



#### 下一代硅负极的发展方向





#### Z. Zhao, Q.-H. Yang\*, et al, Adv. Energy Mater., 10.1002/aenm.202300367

## Nanoyang Group在微米硅负极的持续研究





### 口 研究背景

### 口 研究内容

## 口 总结与展望

口 致谢

# 研究思路



### (一) 颗粒电失连: 自适应电修复破碎微米硅颗粒



□ 静态导电介质无法渗透到破碎的硅颗粒之间,无法避免 "dead Si"
 □ 提出 "自适应电连接"策略,引入可流动、导电性好的液态金属 (LM) 修复破碎颗粒
 □ CVD过程中生长的CNF构建了电极层面的导电通路 Advanced Energy Materials, 2021,<sup>18</sup>/<sub>2103565</sub>

#### 液态金属与微米硅颗粒的亲和性





#### 微米硅高活性原位纳米化



#### 自适应电修复破碎的微米硅策略



□ 液态金属自适应弥散在破碎硅颗粒之间, 形成连续导电介质

### 实用性分析



□ 厚电极电极极化小, 2.5 mAh cm<sup>-2</sup>下, 循环100圈容量保持率70%
 □ 在1c下循环时, 全电池具有~150 mAh g<sup>-1</sup>的可逆容量



微米硅尺寸变化大,对结构、表界面设计要求更高

#### 共价碳层包覆策略



Cu催化碳层有序度、界面Si-C共价键 增强界面连接,维持结构循环过程中的完整性

#### 高有序度碳层+强键合界面



#### 高有序度碳层——缓冲硅体积膨胀

强键合界面——硅体积收缩时保持界面电接触

#### 共价包覆结构的动态可逆性



硅核体积膨胀/收缩过程中,界面接触良好,碳层结构完整

#### 共价包覆结构的动态可逆性





高有序度碳层缓冲应力,缓解硅核破裂程度,减小界面电阻

#### 高面容量稳定循环



□ 面载量为3.05 mg cm<sup>-2</sup>时, 50圈后, 面容量为5.6 mAh cm<sup>-2</sup> □ 面载量与面容量几乎成正比, 表明材料极强的电荷传输能力



## 口 研究背景

## 口 研究内容

#### 口 总结与展望

口 致谢



□技术、产业趋向——微米硅负极

提出了自适应电接触组合策略实现<mark>内部电荷快速传导和外部界</mark> 面高度稳定,促进微米硅材料的商业化应用。

□关键科学问题被放大,需狠抓发展痛点,开创新局面!

